
The binding energy of three nucleons

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1968 J. Phys. A: Gen. Phys. 1 468

(http://iopscience.iop.org/0022-3689/1/4/306)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 13:39

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0022-3689/1/4
http://iopscience.iop.org/0022-3689
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  P H Y S .  A ( P R O C .  P H Y S .  S O C . ) ,  1968,  S E R .  2 ,  V O L .  1. P R I N T E D  I N  G R E A T  B R I T . ~ I X  

The binding energy of three nucleons 
R. L. HALLt  
Chelsea College, University of London 
MS. receined 1st Apri l  1968 

Abstract. A lower bound to the ground-state energy of a system of three nucleons 
is given in terms of the eigenvalues of a two-particle Hamiltonian. N o  special assump- 
tions are made about the form of the ground state of the system. For a simple 
exponential exchange potential we find that the triton energy is -8.1 k 3 . 0  >Iev and 
the tri-neutron energy is greater than -1.35 MeV. The method is quite generally 
applicable to current low-energy phenomenological potentials. 

1. Introduction 
The object of this paper is to provide a simple and effective method for calculating a 

lower bound on the ground-state energy of a system of three nucleons. We assume that 
the nucleons are identical fermions interacting by charge-independent pair potentials, and 
that the motion of the system is governed by non-relativistic quantum mechanics. Earlier 
work (Hall and Post 1967 (method I), Hall 1967 a (method 11), Hall 1967 b, c) provided 
lower bounds on the ground-state energies of N-nucleon systems for all N.  For few- 
nucleon systems method I gave the best (i.e. the highest) energy bound. This bound is 
given by the ground-state energy of the two-nucleon problem, in which the potential 
energy term has been multiplied by the factor 3 and the kinetic energy term has been 
multiplied by the factor 2. In  the case of Wigner forces the energy bound is found to be 
within a few per cent of the exact energy for wide ranges of the potential parameters. 
However, if exchange forces are introduced into the potential to 'fit' some of the low-energy 
scattering data, it is found that the lower bound lies as much as 20% below a variational 
upper bound where, in the case of pure Wigner forces, the separation of the bounds was 
only 1% (Hall 1967 c, chap. 6). Intuitively speaking, we might say that, in the case of 
the exchange potential, the reduced two-particle problem has been loaded with the deepest 
potential, although in the three-particle system all three pairs cannot simultaneously 
interact by such a potential. We have now overcome this difficulty, and the new results 
for exchange forces are as good as those for pure Wigner forces. S o  restrictions on the 
pair potential are introduced by the method, and consequently it may be applied to any 
of the potentials currently used in nuclear phenomenology (e.g. Hamada and Johnston 
1962). 

Weidemann (1965) tried to overcome the difficulty which we have described above. 
He made some arbitrary assumptions about the form of the ground state of the system and, 
moreover, his explicit results apply only to the case of central exchange forces. Great care 
must be taken with these lower-bound calculations. False assumptions about the form of 
the ground state of the many-particle system immediately invalidate the derivation of the 
energy lower bounds. The situation here is very different from the problem of choosing 
trial functions in a variational calculation. 

2. The derivation of the lower-bound method 
We consider a system of three identical nucleons interacting by the charge-independent 

pair potentials z;Tij. The translation-invariant Hamiltonian for the system is given by 

where m is the mass of a nucleon a n d p ,  is the momentum operator for the ith nucleon. 
The  energy Eo which we are studying is the lowest eigenvalue of H with respect to the 
space spanned by normalized antisymmetric functions of the variables r = rl - r2,  
t Now at Department of Mathematics, Queen's University, Kingston, Ontario, Canada, 

46 8 



The binding energy of three nucleons 469 

p = r l +  r2 -2r3 ,  s,, s2, s3, t,, t ,  and t,, where ri, si and ti are the position vector and 
the spin and isospin variables of the ith particle, respectively. The  symmetry of the 
ground state Y o  allows us to write 

E, = (Yo, HY,)  = (Yo, XY,) 
where 

= 2(-A,.+*Vlz). - f i z  

m 

The lower bound to Eo given by method I is just the lowest eigenvalue E ,  of .2 with 
respect to normalized antisymmetric functions of the variables r,  sl, s2, tl and tz .  We shall 
now exploit the symmetry of Y o  to improve this bound. 

We expand Yo in terms of the complete set of orthonormal isospin functions li), 
which are tabulated in appendix 2 : 

8 

i = l  

where the t,5i only depend on the relative coordinates r and p and on the spins. Y o  must 
satisfy 

AYo =Yo 

where A is the antisymmetrizing projection operator in the three particle indices. I n  
equation (A10) (appendix 1) we have expressed A in terms of operators acting on the y5i 
(labelled E )  and operators acting on the j i) (labelled p). Thus we find 

4 

Y o  = 2 (haay5 , )  1 i ) 
i = 1  

+ wzv5  - l q ; y 5 7 )  15 ) - - ATW 17 
+H(-G%3-Ar;1;#8)16) -(A;%-nY:+8)l8 >>. (4) 

Now the operators 
T z  E ( T 1 z + 7 2 z f T 3 r )  

T 2  (71 $ 7 2  +73)'  
and 

are constants of the motion because the pair potentials Vi j  are charge independent and 
therefore only depend on the isospin through the products T ~ . T ~ .  For the triton system 
the eigenvalue MT of T, is 4. This means that only the states /2), 15) and 17) contribute 
to Yo. The  states 15) and 17) have equal weights because the norms of their coefficients 
in equation (4) are equal (this is a consequence of relations (A2) and (A5) in appendix 1). 
The  states 12) and 15) are symmetric in (tl, t2), whereas 17) is antisymmetric in these 
variables. The  coefficients of these isospin states, of course, have the opposite symmetries. 
We have 

and 

For each of the cases T = 9 and T = 8 we apply a similar argument to the one used 
for method I. 

- -  
T = 3 .  2 '  Yo = +(123)1123 ) (see appendix 2) 
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Eo = (‘Yo, H Y o )  = (‘Yo, Y6Y0) 
= {#(G), 38$(5)) 3 3E,. 

therefore 
Eo = (Yo, H Y o )  = (Yo, & T o )  

= $[{#(iz3), 3 8 # ( z 3 ) ) + { + ( i i i 3 ) ,  lYi+(ii3)}] 

3 4(3% + 1%) * 

The suffixes a and s on the eigenvalues of l# and 3~ of 38 indicate the symmetry 
(in the indices 1 and 2) of the corresponding eigenstates. If the spin symmetry and the 
parity of the two-nucleon system are constants of the motion (this is the case for the 
potential of Hamada and Johnston 1962), then a lower bound in Eo is provided by the 
lowest of the following six energies : 

I ;€ - 

& + 

$(;€- + ?€+)  

*(;E- + ;€-) 

and 

(7) 

where the left-hand superscript equals 2S+ 1 and the right-hand superscript indicates the 
parity of the corresponding eigenstate of S, In the next section we shall illustrate this 
method by applying it to the case of a mixture of central exchange forces. 

3. The symmetric exchange potential 
We consider the triton problem with the pair potential 

where 
m = 2b = 4(1+3x) 
h = ZW = + ( 1 - 3 ~ )  

and 

In  this example the odd-parity states of S are unbound, and we have (from equations (7)) 
x = (w+m-b-h)  = 1 Y + / 3 P +  = 0.6. 

Eo 2 EL = $ ( : E +  +:E+). (9) 
An upper bound Eu to Eo is easily found by using the spatially symmetric trial function 

and 
Eo < Eu the minimum of E(+(&)) with respect to a. 
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The  results of this calculation are shown in figure 1 in terms of the following dimensionless 
parameters: 

and 

0 2 4 6 
E 

Figure 1. Exponential exchange potential v against E: U, upper bound; L, lower bound. 

N = 3. 

The  upper bound (U), the lower bound (L), the triplet-even and the singlet-even curves 
are obtained by setting E in equation (13) equal to EU, EL, :e+ and :E+, respectively. The  
lower bound given by method I is just the triplet-even curve. The  new lower bound is 
therefore a great improvement over method I. 

If, in particular, we take the potential (8) with 

Voaz = 92.6 Mevfm2 
cz = 0-86fm 

and 
h2/m = 41 -47 MeV fm2 

we find 

;E+ = -2*7MeV . 1 the ground-state energy of the deuteron = -2.22 MeV 
;E+ = - 19.5 MeV 

EL = $(:E+ +:E+) = - 11.1 MeV 
E, = -5.13 MeV 

Hence the ground-state energy of the triton system is given by 

-11.1 < E ,  < - 5 . 1 3 ~ e v .  
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This result could probably be improved by using a more sophisticated trial function for 
the upper limit. 

I t  is interesting to mention here the problem of the tri-neutron. For simple inter- 
actions where S2 and S, are constants of the motion, we can go through an analogous 
argument to that of $ 2 .  The  x space is spanned by the normalized functions of r and p, 
and the p space is spanned by the spin functions in table 1 (in appendix 2). We find that 
a lower bound to E ,  is given by the lowest of the energies 3 e -  or 4("- + l e + ) .  For the 
interaction (8), 3e-  = 0. Therefore 

E, 2 +(le+) .  (17)  
Hence from (15) the tri-neutron binding energy satisfies 

Eo 3 - 1.35 MeV. 

4. Conclusion 
For three-nucleon systems we have greatly improved on the energy lower bounds 

given by method I. The  new bounds for the triton system (equations (7) )  are quite general 
and would apply, for example, to the realistic nucleon-nucleon potential of Hamada and 
Johnston (1962). I n  the case of the symmetric exchange potential we have determined the 
triton binding energy to within a few per cent for wide ranges of the potential parameters 
(figure 1). In  the region of nuclear physics (U  2: 3.5) the energy bounds are proportion- 
ately more widely separated. We find that the ground-state energy of the triton is 
- 8.1 k 3.0 MeV, whilst the ground-state energy of the tri-neutron is greater than - 1.35 MeV. 

We are hopeful that a more general analysis of the inner product representations of the 
symmetric group S, will enable us to discuss saturation in nuclear physics entirely in 
terms of the energy spectrum of the reduced two-particle Hamiltonian. 

Appendix 1 
Hermitian projection operators for the symmetric group 

We denote the coordinates and the wave function of an N-particle system by x and 
aj(x), respectively. P is a permutation operator acting on x and 0, is an operator defined 
by the relation 

The  permutation symmetry of aj can be analysed (Altmann 1962, p. 144) in terms of the 
symmetrizing operators 

OP#(PX) = #(.)a (AI) 

where the matrices P ( P )  are a real orthogonal irreducible representation of degree n, of 
the symmetric group S, (g  = N ! ) .  The elements D$(P) obey the orthogonality relation 

It follows that 
0,Rif4 = 2 DEi(P)Agj 

and 

The  Hermitian projection operators Ait satisfy the completeness relation 

A:: = the identity operator 1. 
iik 

(A5 ) 

The associate representation 

an irreducible representation which is said to be associate to D'(P). 
The matrices S,D@(P) = Dz(P), where 6, is - 1 if P is odd and + 1 otherwise, form 
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The construction of an antisymmetric function 
We expand the antisymmetrizing projection operator A in terms of the operators At: 

and A;$ which act on, say, the coordinate and spin space (U) and the isospin space (p) ,  
respectively. The  expansion of the identity is given by 

1 = cc 4,")(C*Y) 
liL 1 I 

and the operator 

Hence 

Substituting (A4) in (A7), we find 

I 
= 2 -A!pA;,P from (A3). 

i r i .  f l ~  

The group S3 

p. 224). 
dimensional representation Dm of s, satisfy the relations 

Real orthogonal irreducible representations of S, are given by Hamermesh (1961, 
We find that the corresponding symmetrizing operators A$ for the two- 

and 

The  antisymmetrizing projection operator (A8) for three fermions is therefore given by 

A = AsaAa' + Aaahs' +$(All m'Am' 22 - Am'Amo) 21 12 + +(Am"RT: 22 - Al-;lz"Rz:). W O )  
At;, and A'& generate functions which are symmetric in the indices (12), whilst Az2 and Ay2 
generate functions that are antisymmetric in these indices. 

Appendix 2 
Functions spanning the spin or isospin space of three fermions 

Below we give a table of a complete set of orthonormal spin functions for three fermions 
(adapted from Schiff 1955, p. 235). The particle indices are ordered 1, 2, 3 in every term. 

Table 1 
S o r T  M s o r M T  

-4 

a 
-4 

B 
-B 

3 - s  
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The bar or tilde over two- or more-particle indices indicates symmetry or antisymmetry, 
respectively, in those indices. 
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